

What I ended-up with......

 Sat, Aug 24, 2024 at 6:43 PM

As one can-see, this is somewhat PWM.

But, also of the nature of it's 'stroboscope and sampling' - however, depending on an essential rule of filters, lumped analysis, and line-like analysis, the result of the 'ADC' with a 'log' or 'chunking' is-prone to that of a mass-effect of certain populations, given it is silicone/germanium, and does not represent pure isolation.

This is not to be confused with noise, - thus, in pushing the 'amplification of reception and encoding' to it's maximum, the modular-appearance is manifest as a result (per phase and amplitude) - of 'traces or striping' in the *potential for adaptation to a lumped element design (per component specifiers) that is multi-adaptive, and segmentation and computation of data-flows.

This is not anomalous behavior, it is explained by 'Fermi's Golden Rule' - the classical to quantum scale overlap and transition, and that of 'The Fermi Surface' - when interpreted in certain terms of the stages of the design.

For instance, it is related to, but distinct from Gibb's phenomenon, the Hall effect, the Lenz effect, Thomas precession, self-induced transparency, insulator behavior, and Parity versus Noisy domain and check. The result is due to the genuine entropic and averaging process of a multiple-stage (analog to digital) conversion, innate to the nature of a DSP-chip.

Thus, analog information on a scope can be pushed to the point via adaptation to the equipped means, - to adopt and develop newer technologies, but, there are *also* fundamental limitations to measurement and experimentation via scopes and other measurement equipment.

The result is a 'sensor' - that can be developed to include novel techniques of it's receiving capability.

The outlay is the 'nest' of equipment in the next photo:

So, I now have the main-ingredients of consideration of an approach to understanding *Superconductivity and *Superconductive compounds and materials.

- 1.) The 'original soliton result' in my work with Erica Carlson was mistaken in-code or-in relation to transitional and soliton *exact solution.
- 2.) By connecting the result to the *new result, and considering the Sine-Gordon equation with kinks and antikink(s), in connection with lumped element (electronics theory) and the KP-soliton theory (as in relation to a finite Non-Linear Schroedinger Equation type system (finite)) there is the result of refinement of a model, [basic.].
- 3.) When, as then is justified, we go-to the experimental and measureable theorem as vast as from the realm of computational science to medical and ecological sciences, via *self-induced transparency and the *double or single blind test-assumptive, we may confirm theoretically a 'manual' to study these materials and results.
- 4.) The theory may then be justified, repeatable, and testable, measureable, and observable. This result may confirm (for in optical theory) new avenues of exploration.

The key is in understanding via the work of Lorentz, with chaos and order, with a balanced approach to thermodynamics, that computer(s) do not substitute for a thinking individual.

Secondly, it is also understood that the result may depend on the nature of agreement and experimental (double practitioner) - test-assumptive to guarantee not-any, but the end-result. This is a consequence of the nature of separation of the nature of power structure and element, and as-such, justifies that the assumptive of a 'solitary condition' may not be ideal.

Mathematically, there is a finite, then capacible principle, governing the investigation of superconductivity in the High-Tc compounds.

My first phase of exploration into finding the means to procure ways of providing for myself is complete.

My investigation into technology, practice of electronics, and the development of the sciences, and my investigation into a manner of approach to comprehend chaos and order is settled today.

I found it was not a theory to experiment problem, nor - entirely experiment to theory.

It requires two fields to come together, and at least myself, now, and representatives of two adjacent fields.